Stability for solution of Differential Variational Inequalitiy
نویسنده
چکیده
In this paper we study the class of differential variational inequality(DVI) in a finite-dimension Euclidean space <n, which is the following form ẋ(t) = f(t, x(t)) + B(t, x(t))u(t) , x(0) = x0 ∈ <n 0 ≤ (ũ− u(t))T [G(t, x(t)) + F (u(t))] for almost all ũ ∈ K u(t) ∈ K We study stability and perturbation of the DVI under the OSL condition. Besides, we establish a Prior Bound Theorem, which is a useful tool to prove stability of DVI. In this paper, we replace the classical Lipshitz continuity by one-sided Lipschitz condition, which is important improvement of the conventional Lipschitz continuity.
منابع مشابه
Usage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations
Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملA New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations
Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...
متن کاملApproximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کامل